Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The power transmission infrastructure is vulnerable to extreme weather events, particularly hurricanes and tropical storms. A recent example is the damage caused by Hurricane Maria (H-Maria) in the archipelago of Puerto Rico in September 2017, where major failures in the transmission infrastructure led to a total blackout. Numerous studies have been conducted to examine strategies to strengthen the transmission system, including burying the power lines underground or increasing the frequency of tree trimming. However, few studies focus on the direct hardening of the transmission towers to accomplish an increase in resiliency. This machine learning-based study fills this need by analyzing three direct hardening scenarios and determining the effectiveness of these changes in the context of H-Maria. A methodology for estimating transmission tower damage is presented here as well as an analysis of impact of replacing structures with a high failure rate with more resilient ones. We found the steel self-support-pole to be the best replacement option for the towers with high failure rate. Furthermore, the third hardening scenario, where all wooden poles were replaced, exhibited a maximum reduction in damaged towers in a single line of 66% while lowering the mean number of damaged towers per line by 10%.more » « less
-
The recurrence of extreme weather events has led to the development of methods for assessing the vulnerability and interdependencies of physical and human systems. A case example is Hurricane Maria (H-Maria), where Puerto Rico experienced damage to 80% of its electrical power system, leading to massive disruptions of essential services for months. Here we evaluate the effectiveness of various interventions aimed at reducing vulnerability by considering power and water infrastructure and respective water–power dependencies while also considering the social vulnerability of affected communities associated with the physical infrastructure upgrades. On the basis of the current infrastructure configuration, we found that all communities suffered enormously from power and water outages. As one upgrade option, we show that incorporating regional energy grids would reduce outages in an H-Maria scenario. However, a large portion of disadvantaged communities will face service disruption under this option. In contrast, hardening transmission lines, as the second option, would improve service delivery and, most importantly, provide uninterrupted service to the higher portion of the vulnerable population.more » « less
-
Abstract A multi-agency succession of field campaigns was conducted in southeastern Texas during July 2021 through October 2022 to study the complex interactions of aerosols, clouds and air pollution in the coastal urban environment. As part of the Tracking Aerosol Convection interactions Experiment (TRACER), the TRACER- Air Quality (TAQ) campaign the Experiment of Sea Breeze Convection, Aerosols, Precipitation and Environment (ESCAPE) and the Convective Cloud Urban Boundary Layer Experiment (CUBE), a combination of ground-based supersites and mobile laboratories, shipborne measurements and aircraft-based instrumentation were deployed. These diverse platforms collected high-resolution data to characterize the aerosol microphysics and chemistry, cloud and precipitation micro- and macro-physical properties, environmental thermodynamics and air quality-relevant constituents that are being used in follow-on analysis and modeling activities. We present the overall deployment setups, a summary of the campaign conditions and a sampling of early research results related to: (a) aerosol precursors in the urban environment, (b) influences of local meteorology on air pollution, (c) detailed observations of the sea breeze circulation, (d) retrieved supersaturation in convective updrafts, (e) characterizing the convective updraft lifecycle, (f) variability in lightning characteristics of convective storms and (g) urban influences on surface energy fluxes. The work concludes with discussion of future research activities highlighted by the TRACER model-intercomparison project to explore the representation of aerosol-convective interactions in high-resolution simulations.more » « lessFree, publicly-accessible full text available August 4, 2026
An official website of the United States government
